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Abstract

I revisit the classic no-bet results of Geanakoplos and Sebenius (1983) (etc.) and consider the

implications of introducing some heterogeneity in state-contingent preferences. In particular,

I find that the no-bet result can withstand a moderate degree of preference heterogeneity,

and I fully characterize the situations for which betting does obtain, in the special case that

agents are risk-neutral in each state. Furthermore, I identify two ways in which the problem

is badly behaved: finding, first, that even arbitrarily small changes to the distribution of

signals and preferences can produce discrete jumps in the volume of betting that takes place;

and second, that even arbitrarily small transaction costs may do the same.

1 Introduction

Since the inception of information economics over forty years ago by the seminal work of Robert

Aumann, David Blackwell, John Harsanyi, and others, economic theorists have formally ex-

plored the nature and implications of disagreement. Perhaps the most interesting fruits of

this exploration have been the relationships uncovered between information and “speculative

trade”—that is, trade for which some kind of disagreement (about the expected future value

of the state-contingent asset being traded) is necessary. In particular, it often happens that

trade that initially appears feasible on account of two parties’ information differences will not

take place: each party can update his own beliefs in light of the other’s willingness to trade,

ultimately causing the difference in expectations to vanish.

Central to all of this early work concerning the infeasibility of trade was the assumption that,

for a trade to take place, the parties involved had to have common knowledge of their willingness

to trade. Accordingly, when the trade is predicated entirely on a difference in expectations—

such as a bet among risk-neutral parties—it can only go through when the parties have common

knowledge of the fact that their expectations differ. But Aumann (1976) shows that, so long as
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the parties have a common prior and common knowledge of their rationality, they cannot have

common knowledge of a difference in expectations. Indeed, as Geanakoplos and Polemarchakis

(1982) spell out, the sequence of tentative offers and counteroffers that presumably precedes the

state-contingent contract will cause the parties’ expectations to converge (at least so long as their

partitions are finite; and if countably infinite, the sequence brings their expectations arbitrarily

close). It immediately follows that, under the above assumptions, no trading predicated on a

difference in expectations can take place. This argument is made explicit for simple bets in

Geanakoplos and Sebenius (1983) (and more famously for general commodity spaces in Milgrom

and Stokey (1982), so long as the endowments are ex-ante efficient and the agents have convex

preferences).

Since betting and informationally-motivated trade are commonly observed, researchers went

on to consider various ways of relaxing the assumptions behind these early theorems. The

most obvious place to start is to relax the common knowledge requirement to one of “k-mutual

knowledge”. That is, instead of stipulating that both parties know of each other’s rationality

(or prior, or willingness to trade), know of that knowledge, and so on ad infinitum, we may

stipulate that they only have that knowledge, know of that knowledge, and so on, for k steps.

(The notion of k-mutual knowledge is most famously illustrated and explored, though under

a different name, in the “electronic mail game” scenario of Rubenstein (1989).) It is easy to

observe—and, in a limited way, was noted even within Geanakoplos and Sebenius (1983)—that

when we replace common with k-mutual knowledge, all the results outlined above, with respect

to agreement, betting, and trade, can fail spectacularly, so long as the partitions of the agents

involved are sufficiently fine.1

There is also, it turns out, a more promising way to relax the common knowledge assumption.

Two agents have “common p-belief” in E, as defined by Monderer and Samet (1989), if they

both assign probability at least p to E, both assign at least probability p to the idea that they

both assign probability at least p to E, and so on, ad infinitum. In general, if two parties share

common p-belief in E, their beliefs can differ by up to 2(1− p). As a result, if these people can

attain only common p-belief in each other’s willingness to trade—a situation that could arise,

for instance, if their decision to trade is to some extent “noisy”, in that the button to accept or

reject an offer misfires 1− p of the time—some trade may yet go on between them.2 Finally, a

broad literature considers other ways to approximate common knowledge, often along with the

relevant implications for speculation.

1A more thorough investigation of the bounds imposed by k-mutual knowledge of rationality can be found in

Takamiya and Tanaka (2006).
2The relevant connections to betting and trade are drawn in Neeman (1993) and Sonsino (1995).
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There are a handful of less mainstream ways to relax the assumptions built into the original

framework, of which at least two are worth mentioning. First, we may consider “non-partitional”

signal structures, in which each person’s interim-period signal takes the form of a family of (not

necessarily disjoint) subsets of the state space. Though such structures, and their implications

for speculation, have been analyzed,3 most research in information economics continues to rely,

implicitly or explicitly, on partitions, since they are the only signal structures that satisfy cer-

tain basic rationality assumptions.4 Second, we may permit our agents to have heterogeneous

priors. (One motivation for doing so is Aumann’s argument5 that, strictly speaking, we ought to

incorporate even the agents’ beliefs into our “states”. When we do so, heterogeneous priors over

the state space are necessary if we are to relax any part of the seemingly strong condition that

both the priors and the partitions are common knowledge.) The implications of heterogeneous

priors have been studied thoroughly as well,6 but this approach too is open to philosophical

criticism.7 In particular, heterogeneous priors can be introduced only at the cost of violating

the “Harsanyi doctrine”—that is, at the cost of making the claim that agents’ beliefs are, at

least to some extent, truly arbitrary, and not functions of the information they have received.

In the end, therefore, common priors and partitions continue to be the standard tools used in

analyzing the economic implications of differences in information.

In this theoretical tradition, however, little has been written exploring the consequences

of relaxing the assumption of ex-ante efficiency. that is, the consequences of diverse beliefs in

the presence of the kinds of heterogeneous preferences that allow for ordinary trade as well.

Accordingly, we will introduce such preference heterogeneity as simply as possible: the good in

question will be some payment given event E, its price being some obligation given ¬E (so that

the trade amounts to a bet), and the relevant circumstances will be distributions of linear state-

contingent preferences for money. This could be understood as a simple case of the situation

that arises when, for instance, an agent sells a rarely traded, risky bond over the counter. In

the absence of an exchange (or recent price data), neither party can deduce anything about the

true state from a single, public price; each agent updates his beliefs only on the evidence of

the other’s willingness to trade. Furthermore, though the buyer and the seller privately assign

probabilities to the event of default, they might find a price at which to trade even if they had

the same beliefs, since the expectation of default may be correlated or anticorrelated with each

3Originally in Geanakoplos (1989).
4As explained in Bacharach (1985).
5Made explicit in Aumann (1999), etc.
6Seminally in Morris (1994); see also Sethi and Yildiz (2012), etc.
7See Morris (1995) for a discussion of the debate. (He ultimately argues on behalf of the legitimacy of

heterogeneous priors.)
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agent’s other positions.

Presented here is a more precise statement of the problem and a demonstration of the key

findings.

2 Framework

The model of information used here can be summarized as follows: Time is divided into three

periods. Ex-ante, everyone has a common prior probability distribution over a state space, along

with a private partition over it. Both the prior and the partitions are common knowledge. At

an intermediate stage, each person learns which element of his own partition contains the true

state of the world, allowing him to rule out the others and update his beliefs accordingly. At

this point, people have the opportunity to trade goods whose value depends on the true state,

each presumably hoping to profit from his own private information. At an ex-post stage, the

true state is revealed.

Here, we will consider a population of common-knowledge-rational agents who receive inde-

pendent signals and then have the opportunity to bet over E, an event with respect to which

they have a common prior but heterogeneous preferences for money. (That is, interpreting this

bet as the trade of a simple state-contingent good, we will reject the ex-ante efficiency assump-

tion of Milgrom and Stokey (1982) but maintain the others.) The agents are then randomly

matched and given the opportunity to bet, each without knowing the belief- or preference-type

of the other.

Note that the classic no-bet results can be interpreted as resting on an infinite sequence of

conditioning and counter-conditioning whose ultimate result leaves both agents with the same

(relevant) beliefs. The framework presented here hopes to shed more light on this process by

studying the kind of partial conditioning in which agents engage when they do not know to what

extent their partner is acting on different beliefs and to what extent she is acting on different

preferences.8

For instance, the analysis of betting from Geanakoplos and Sebenius, etc. was surprising, at

the time, because it showed that under certain standard assumptions, a difference in informa-

tion is never enough to produce betting; no matter how much people’s signals differ, common

knowledge of a willingness to bet must cause their beliefs about the event to converge. What

8Note also the way in which our approach differs from the approach to trade under uncertainty taken in Arrow

and Debreu (1954) and the subsequent literature on general equilibrium under uncertainty. Since betting is

decentralized, we are not solving for general equilibrium; bets at different odds may be taking place simultaneously,

between different pairs of agents. Indeed, the very presence of a public, equilibrating price would usually render

information trade impossible, as per Nielsen et al. (1990).
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we will observe below is this: not only do the induced differences in information fail to give rise

to betting, they are generally an active force in killing off betting that would have taken place

before the signals were received. That is, betting generally fails not despite differences in infor-

mation, but somewhat because of them, and the greater the information differences, the rarer

betting becomes. This observation is reminiscent of the insurance-market-destroying effects of

asymmetric information discussed at length in Arrow (1963) and the subsequent literature.

3 Statement of the Problem

For simplicity, we will only consider the case in which the utility in wealth for each person i is

linear in each state. Letting xi,E denote i’s wealth in event E:

ui,E(xi,E) = aixi,E + bi (ai > 0), u¬E(xi,¬E) = cixi,¬E + di (ci > 0).

Accordingly, we can characterize each person’s preferences with a single number pi = ai
ai+ci

∈

[0, 1]. This number equals the rate at which i is willing to substitute wealth given E to wealth

given ¬E if he considers them equally likely.

Our agents have a common prior q for E; their different beliefs about E result from different

signals, which are independent conditional on the truth-value of E. A signal is just a number

b ∈ [0, 1] assigning some probability to E. Upon receiving her signal, agent i can be characterized

by a pair (pi, bi) ∈ [0, 1]2.

Let k ∈ (0,∞) denote the odds: the size of the payment if ¬E per dollar paid if E. After

receiving their signals, agents can be characterized in terms of their “naive willingness to bet on

E.”

Definition 3.1. Agent i’s naive willingness to bet, denoted ni, is the lowest (highest) odds at

which he is willing to betting on E (¬E)—that is, the odds at which he is indifferent to betting

either way—without conditioning on the other agent’s willingness to bet at that odds. More

formally, it is the ni satisfying bipi − (1− bi)(1− pi)ni = 0.

Rearranging the above to get bi as a function of the other terms, we have the hyperbolic

function

bi =
ni − nipi

pi + ni − nipi
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Figure 1.

From this it is clear that:

Proposition 1. If an agent is naively willing to bet at odds k, paying if E (¬E), he is navely

willing to bet at odds k′ ≤ k (k′ ≥ k).

Since our agents are not naive, however, they condition on the fact that the other agent

belongs to the opposite set, and they raise or lower their credences in E accordingly. In general,

these new beliefs render it unprofitable for those on the margin to go ahead with the bet; the

frontiers of the willingness-to-bet sets retreat toward the lower left and upper right corners. Each

party then reconditions on the new, even more distant set to which he knows the other belongs;

the frontiers retreat further; and so on. There will be some betting if and only if this process

reaches Bayesian equilibrium before our sets “hit the corners.”

More formally: a bet of odds k can go through between two agents, 1 and 2, if and only if

there is a pair of subsets F1 3 (p1, b1) and F2 3 (p2, b2) of the unit square such that each set

consists precisely of the agents who would be willing to bet at odds k, even after incorporating

into his beliefs the (common) knowledge that the other agent’s type is in the other set.

Let 1 denote the person paying if E and receiving if ¬E. It is clear that if 1 is willing to

make a bet, conditional on the knowledge that 2 ∈ F2, then so is any agent A with pA ≤ p1 and

bA ≤ b1. Furthermore, if 1 and some A are both indifferent to taking the bet, and bA < b1, then

pA > p1. Likewise, if 2 is willing to make a bet, conditional on the knowledge that 1 ∈ F1, then

so is any A with pA ≥ p2 and bA ≥ b2; and if 2 and A are both indifferent to taking the bet, and

bA > b2, then pA > p2. It follows that we can characterize our sets Fi by monotonically decreas-

ing functions fi(p), defined on [0, 1]. These tell us the signals that someone of preference-type p

would have to have received in order to be indifferent to offering, or taking, a given bet.
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Figure 2.

If E, our agents receive one distribution of signals, given by probability density function (or, if

the distribution is discrete, mass function) gE(p, b). If ¬E, they receive a different distribution,

given by g¬E(p, b). For now, we will assume that the distributions of preference- and signal-types

are integrable and continuous. If either or both is discrete, one can replace the relevant integral

with a summation.

The only restrictions placed on this pair of distributions are those two which follow directly

from the above setup:

1. gE(p,b)
g¬E(p,b) = b ∀b

This guarantees that the probability an agent assigns to E, upon receiving signal b, is in

fact equal to b.

2. q
∫ 1

0
gE(p, b)db+ (1− q)

∫ 1

0
g¬E(p, b)db = q ∀p

This guarantees that each person’s expected belief, upon receiving his signal, is equal to

the prior.

Bayes’ Rule tells us that the probability that 1 assigns to E, after learning both her private

signal and the fact that 2 3 F2, is

Pr(E|F2, b1) = Pr(E|b1)
Pr(F2|E, b1)

Pr(F2|b1)
= b1

Pr(F2|E)

Pr(F2|b1)

If b1 = f1(p), this equals

f1(p)
∫ 1

0

∫ 1

f2(x)
gE(x, b) db dx∫ 1

0

∫ 1

f2(x)
f1(p)gE(x, b) + (1− f1(p))g¬E(x, b) db dx

Of course, 2’s credence in E after receiving both his private signal and the fact that 1 ∈ F1 is

the same, but with f2(p) in place of f1(p), and integrating from 0 to f1(x) instead of from f2(x)

to 1. Let us denote these posterior beliefs b′1 and b′2.
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Finally, to simplify notation, let

X1 =

∫ 1

0

∫ 1

f2(x)

gE(x, b) db dx and Y1 =

∫ 1

0

∫ 1

f2(x)

g¬E(x, b) db dx

and let X2 and Y2 represent the corresponding terms in b′2. Now we have

b′i =
fi(p)Xi

fi(p)Xi + (1− fi(p))Yi
.

To be indifferent to the marginal bet at odds k, each agent’s (posterior) expected utility gain

from it must be 0. That is, we must have

b′ipi − (1− b′i)(1− pi)k = 0 ∀p ∈ [0, 1].

Plugging in for b′i and rearranging algebraically, we see that each “indifference function” takes

the form

fi(p) =
ci − cip

p+ ci − cip

where ci denotes k Yi

Xi
. As we can see, this curve is hyperbolic, just like the curve defining the

naive willingness-to-bet types. Furthermore, since it is plain that X1 ≥ Y1 and Y2 ≥ X2 for any

distribution and any pair of sets defined by f1(p) and f2(p), we have:

Proposition 2. If two agents i and j are indifferent to betting at odds k, paying if E (¬E),

there is some odds k′ ≤ k (k′ ≥ k) at which i and j are naively indifferent to betting.

Visually, this tells us that our sets F1 and F2—just like the sets of nave willingness-to-bet

types—must take the following form for some pair of nonnegative c1, c2 (c1 < c2):

Figure 3.

Corollary 1. If an agent is willing to bet at odds k, she is naively willing to bet at odds k.
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Proof : By Proposition 2, if an agent is willing to bet at odds k (paying if E), she is naively

willing to bet at some odds k′ ≥ k. Then by Proposition 1, she is naively willing to bet at odds

k. �

Now, to determine the odds at which our (p, b)-distribution will permit betting, it is clear that

everything relevant about our distribution can be captured by a pair of one-variable cumulative

distribution functions NE(c) and N¬E(c): the fraction of the population with naive willingness

to bet no greater than c under E and ¬E, respectively. (If two distributions of preferences and

signals give rise to the same distributions of naive willingness to bet, they ultimately exhibit the

same betting characteristics.) So the proposition above can be restated thus: our agents can

reach Bayesian equilibrium in considering a bet at odds k if there exist c1 and c2 such that

c1 = k
1−N¬E(c2)

1−NE(c2)
and c2 = k

N¬E(c1)

NE(c1)
.

As expected, this has a trivial solution, for all k, of c1 = 0 and (in the limit, as c1 decreases)

c2 =∞. The question is, are there any other solutions? That is—plugging c2 into the equation

for c1—are there any zeros of the function

1−N¬E(N¬E(c)
NE(c) )

1−NE(N¬E(c)
NE(c) )

k − c

besides that which we know exists (in the limit) at c = 0?

4 A Simpler Characterization

Consider the functions c1(c2) and c2(c1) defined above. To say that there will be no betting at

some odds k, say k = 1, is to say that the graphs of these functions (where k = 1) never intersect:

Figure 4.
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For now, let us think of these graphs as both representing c2 in terms of c1, and let us

denote them a(c) and b(c). (Note that a(c) may be a relation, rather than a function, since we

have no reason to believe that c1(c2) is monotonically decreasing in c2. Furthermore, c1(c2) and

c2(c1) may be discontinuous, in the event that our distribution g contains point masses; if so,

let us connect our graphs with the relevant vertical or horizontal line segments, and have c1(c2)

and c2(c1) refer henceforth to the corresponding relations. For the purpose of the diagrams that

follow, however, we will generally assume that g is continuous and supported everywhere.) There

will be no betting at our chosen odds (k = 1) if and only if the graphs never intersect—that is,

if a(c) < b(c) ∀x > 0.

Furthermore, as we know from the definitions of c1(c2) and c2(c1), choosing another odds

k will produce a pair of graphs like those above but with a(c) shifted right, and b(c) shifted

up, by a factor of k. Therefore, to say that betting will not take place for any k is to say that

a(xk ) < kb(x) for all x, k > 0. It follows from this that there is a function c(x) satisfying the

following two conditions:

1. a(x) < c(x) ≤ b(x) ∀x > 0

2. c(xk ) = kc(x) ∀x, k > 0

Note that Condition 2 is equivalent to the condition that c(x) = d
x for some constant d.

Therefore, it is also equivalent to the condition that 1
k c(

1
k ) = c(1) ∀k > 0.

To see this, observe that Condition 2 essentially consists of an infinite set of requirements on

c(1): two requirements for every positive real number k, taking the form

1

k
a(

1

k
) < c(1) ≤ 1

k
b(

1

k
).

So long as there is some c(1) that satisfies all these requirements, we can define c(x) in general

by c( 1
k ) = kc(1), and both conditions will be satisfied.

Naturally, there is such a potential c(1) if, for all pairs k1, k2, we have

1

k1
a(

1

k1
) <

1

k2
b(

1

k2
).

In fact, this inequality does hold: it can be generated by substituting k = k1
k2

and x = 1
k2

into

the inequality stipulated above, a(xk ) < kb(x), and then dividing both sides by k1.

So there will be no betting if, for some constant d, we have a(x) < d
x ≤ b(x) ∀x > 0. Since d

x

is symmetric about y = x, we may replace a(x) with c1(c2) from above (which, by construction,

is simply a(x) but flipped about y = x). It follows that there will be betting if, for some d and

some pair c1, c2 (c1 < c2), c1(c2)c2 = d = c2(c1)c1. Or—since the choice of d is now irrelevant,

and since c1(c) < c2(c)—
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Proposition 3. There will be betting if and only if one of the following cases holds:

1. infc
N¬E(c)
NE(c) c < supc

1−N¬E(c)
1−NE(c) c, c ∈ (0,∞)

2. minc
N¬E(c)
NE(c) c = maxc

1−N¬E(c)
1−NE(c) c, c ∈ (0,∞)

That is, there will betting if and only if a horizontal line can be drawn that intersects the graphs

of c1(c)c and c2(c)c at values other than 0 or ∞.

Figure 5.

This visualization may help to clarify the way in which an increase in information quality

decreases the prevalence of betting:

Figure 6.

• Left : When everyone has the same beliefs—that is, when everyone’s signal is completely

uninformative—our distribution gE = g¬E takes the form of a horizontal line across the

unit square at b = q, so N¬E(c) = NE(c) ∀c. It follows that

– c1(c)c = 1−N¬E(c)
1−NE(c) c = c ∀c, and
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– c2(c)c = N¬E(c)
NE(c) c = c ∀c.

Accordingly, any horizontal line drawn across the graph above—any choice of d—intersects

both graphs; and at the corresponding odds, a bet will go through for some pair of sets

denoted by c1 = c2.

• Middle: A strict improvement in the quality of information received by any individual

increases N¬E(c) and decreases NE(c); accordingly, it weakly increases c1(c)c and decreases

c2(c)c. A geometrically obvious consequence of this is that it weakly increases the minimum

wedge between c1 and c2, and so the wedge between F1 and F2 (minimized over the choice

of d, and so over the choice of k).

• Right : If everyone receives perfect information, then NE(c) = 0 and N¬E(c) = 1, ∀c ∈

(0,∞); so c1(c)c =∞ and c2(c)c = 0, ∀c ∈ (0,∞).

5 Further Examples

The characterization presented above gives us enough of a handle on the problem to determine

whether betting will take place under various classes of distributions. Two examples:

• Suppose that the expected distribution of signals is uniform on [0, 1] for each preference-

type (that is, gE(p, b) = 2bg(p)). Then there will not be betting if pmax <
4pmin

1+2pmin
, where

pmin and pmax are respectively the lowest and highest preference-types to be found in the

population.

Proof : We have not specified the distribution of preference-types, but we know that N¬E(c)
NE(c)

increases, for all c, when preference-types increase. Therefore c2(c)c is minimized for all c,

within our constraints, when the entire population possesses preferences p = pmin. In this

case, simple algebra reveals c2(c)c = 2pmin

1−pmin
+ c; so c2(c)c attains a minimum of 2pmin

1−pmin

at c = 0. Likewise, 1−N¬E(c)
1−NE(c) c = c1(c)c is maximized for all c when the entire population

possesses preferences p = pmax, and in this case c1(c)c = c pmax

pmax+2c−2pmax
, which approaches

a supremum (in the infinite limit) of pmax

2−2pmax
. From Proposition 3, then, there will not be

betting if pmax

2−2pmax
< 2pmax

1−pmax
. Rearranging, we get the result above. �

This example illustrates the principle that the introduction of even a moderately informa-

tive signal will eliminate betting, if preferences are insufficiently diverse.

• Suppose that the distribution of preference-types is uniform on [0, 1] and that each person,

independently of preference, receives one of three signals: 0, 1, or q. That is, one either
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learns the truth-value of E, with probability r, or learns nothing, with probability 1 − r.

Then, regardless of q, betting obtains if and only if r < 1
2 .

Proof : The proof proceeds along the same lines as above. Routine calculations tell us

that c2(c)c = rq
(1−r)(1−q) + c

1−r , which has a clear minimum at c = 0 of rq
(1−r)(1−q) . And

c1(c)c = c q−rq
q+c(r−rq) , which approaches a supremum (in the infinite limit) of q−rq

r−rq . The

inequality rq
(1−r)(1−q) <

q−rq
r−rq then reduces to r < 1

2 .

This example again illustrates that an increase in the quality of information decreases the

incidence of betting. Furthermore, it illustrates an interesting pattern that repeatedly

appears, upon closer investigation, though is difficult to formalize in its own right: that, in

general, we only have to move “halfway” from the ex-ante state of uncertainty to a state

of complete information in order to eliminate all betting.

6 Extreme Sensitivity in the Distribution

Having determined the betting behavior possible under a given distribution, one may wonder

whether, in some sense, similar betting behavior must occur under similar distributions. We will

see that the answer is resoundingly no. The problem may be formalized thus:

Definition 6.1. A distribution G supports a betting volume of v if there exists odds k such

that individuals matched at random are willing to bet at odds k with ex-ante probability at

least v.

Definition 6.2. A distribution G is sensitive if it supports a betting volume of v > 0 and

if there exists a distribution G′, centered around the same prior, such that the distribution

Gε = (1− ε)G+ εG′ supports no betting at all ε > 0.

That is, a distribution G is sensitive if it supports some positive quantity of betting, but

slight deviations from G (in the direction of some G) support no betting.

Proposition 4. A distribution is sensitive if and only if it satisfies the condition specified in

Case 2 of Proposition 3 above.

Proof : Suppose G is such that mincc2(c)c = maxcc1(c)c. Consider the distribution G′ defined

by G′E(p, b) = 0, for b < 1, and G′E(p, b) = p, for b = 1: that is, the distribution in which

preference-types are uniformly distributed on [0, 1] and everyone learns the true state. Then, for

any ε > 0, Nε
¬E(c) > N¬E(c) and Nε

E(c) < NE(c) ∀c > 0. It follows that cε2(c)c > c2(c)c and

cε1(c)c < c1(c)c ∀c > 0. Accordingly, mincc
ε
2(c)c > maxcc

ε
1(c)c. By Proposition 3, Gε supports

no betting.
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Conversely, suppose that there is a (non-singleton) range of values d attained by both c1(c)c

and c2(c)c on c ∈ (0, ), as in Case 1. In particular, let us consider values d1 and d2 where

0 < d1 < d2 and d2 − d1 = δ. We will find an ε such that, given any distribution G′, the

corresponding functions cε1(c)c and cε2(c)c attain the value d1+d2
2 .

Let C2 denote the value c such that c2(c)c = d1, and let C1 denote the value c such that

c1(c)c = d2. The distribution G′ that maximizes the term cε2(C2)C2 will be a distribution such

that N ′¬E(C2) = 1 and N ′E(C2) = 0; in this case, the difference between the two terms, which

we may denote δ2, equals

cε2(C2)C2 − c2(C2)C2

=
(1− ε)N¬E(C2) + ε

(1− ε)NE(C2)
C2 −

N¬E(C2)

NE(C2)
C2

=
εC2

(1− ε)NE(C2)
.

To ensure that this difference not exceed δ
2 , choose

ε ≤ A :=
δNE(C2)

2C2 − δNE(C2)
.

Likewise, by considering the distribution G′ that minimizes the term cε1(C1)C1, we find that we

can ensure that δ1 = cε1(C1)C1 − c1(C1)C1 ≤ δ
2 by choosing

ε ≤ B :=
δ(2NE(C1)−NE(C1)2 − 1)

δ(NE(C1)−NE(C1)2) + 2N¬E(C1)C1 − 2C1
.

Given the positive, finite values d1 and d2 attained, we know that NE(C1), N¬E(C1), NE(C2),

and N¬E(C2) must all lie strictly within the interval (0, 1). One can then see that A and B must

be positive and finite. Letting ε = min(A,B) > 0, we have that, regardless of the choice of G′,

cε2(C2)C2 = d1 + δ2 ≤ d1 +
δ

2
=
d1 + d2

2
, and

cε1(C1)C1 = d2 − δ1 ≥ d2 −
δ

2
=
d1 + d2

2
.

From the connectedness of the graphs, the fact that cε1(0)0 = 0, and the fact that cε2(c)c has

no upper bound, it follows that cε1(c)c and cε2(c)c both attain the value d1+d2
2 . Therefore Gε

supports betting. �

Proposition 5. There are sensitive distributions.

Example: Consider the distribution defined by
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GαE(p, b) =



0 b < 1
2

α(2
p−1
p ) 1

2 ≤ b < 1, p < 1
2

α(1− 2
p

p−1 ) 1
2 ≤ b < 1, p ≥ 1

2

(1− α)p+ α(2
p−1
p ) b = 1, p < 1

2

(1− α)p+ α(1− 2
p

p−1 ) b = 1, p ≥ 1
2

.

Figure 7.

Note that Gα is the α-average of

1. a distribution G defined by

GE(p, b) =


0 b < 1

2

2
p−1
p b ≥ 1

2 , p <
1
2

1− 2
p

p−1 b ≥ 1
2 , p ≥

1
2

and

2. the perfect-information distribution G′ described in the first half of the proof of Proposition

4 above.

By numerical approximation, we achieve the equality of Case 2 when α ≈ 0.790. Under this

distribution G0.790, betting obtains at exactly one odds (k ≈ 6.00), with a betting volume of

v ≈ .08. Even an infinitesimal decrease in α, however—that is, even an infinitesimal averaging

of G0.790 with G′—renders all betting impossible. �
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7 Transaction Costs

Given this sensitivity, we may ask the following. If a distribution G supports a betting volume

of v > 0, when the transaction costs of betting are 0 (as implicitly assumed so far), will betting

be possible if there are arbitrarily small transaction costs?

In the event of transaction costs, we will say without loss of generality that 1 does not receive

every dollar that 2 pays if ¬E. That is, whenever 2 effectively faces odds k2, 1 effectively faces

odds k1 < k2. Agent i’s indifference function, therefore, must satisfy

b′ip− (1− b′i)(1− p)ki = 0 ∀p ∈ [0, 1].

Now, remembering Figure 2 above: upon multiplying a(x) by a factor of k2, we only shift b(x)

right by a factor of k1 < k2. It follows that if there exists only a single value d such that,

for some (c1, c2), a(c1) = d
c1

and b(c2) = d
c2

, then introducing transaction costs will not allow

for any such d. But if there is a range of acceptable values d, then, by the same reasoning as

used to prove Proposition 5 above, small transaction costs may be introduced without entirely

eliminating betting. In other words,

Proposition 6. “Sensitivity in the distribution” as defined above is equivalent to sensitivity to

transaction costs.

8 Conclusion

Our main result is an extension of the no-bet result to a class of situations involving preference

heterogeneity. In particular, the situations considered are those in which individuals receive

independent signals and hold linear preferences in each of two states of the world.

Of course, the latter assumption is unrealistic; it entails, for example, that our randomly

matched agents will (upon finding mutually agreeable odds) make their bets infinitely large.

An original motivation for this simplification, however, was the observation that, so long as

people’s utility functions are smooth, they will be “locally linear” (around whatever their en-

dowments in each state happen to be). As a result (the thinking went), if we pretend that

they have those linear utility functions—those tangent to their actual utility functions at their

ex-ante endowments—and then determine the odds at which betting can take place, we will

have determined the odds at which, given their actual utility functions, “marginal bets” (bets of

infinitesimal size) at a given odds will take place. Misguided intuition and an erroneous sketch

of a proof then suggested that if we could find the distributions under which no marginal bets

would take place, we would more generally have found the distributions under which no bets
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at all would take place, since increasing the size of the bet could only (it appeared) leave fewer

people willing to bet.

It is plain that this reasoning does in fact hold when the distributions of signals and pref-

erences are independent. Under such circumstances, the offer of a large bet cannot convey any

more or less information to the other party about the probability of the event than would the

offer of a small bet at the same odds. However, this “no small bet implies no large bet” rea-

soning does not hold in general. If highly risk-averse members of our population tend to receive

high-quality signals, the offer of a large bet may go through when the offer of a small bet would

not. The acceptance of the large bet makes it common knowledge between the agents that they

are less risk-averse, and therefore that their signals are relatively weak; so an agent will not alter

his beliefs as much, in light of the other’s acceptance, as he would upon observing the other’s

acceptance of a small bet. This phenomenon is explored in Easley and O’Hara (1987) and related

literature.

There is hope, however, that the “linear-preferences-based” analysis presented above is useful

even in cases where the distributions of signals and preferences do exhibit some mutual infor-

mation. If the bets being analyzed here are interpreted to be trades of an uncommon sort of

financial product—a particular risky bond, for instance, as proposed in the introduction—then

large bets may be infeasible. Since the seller’s holdings of this state-contingent good may be

small in comparison to either party’s endowment in each state, their behavior could be expected

to approximate the behavior that would be exhibited under linear preferences.

Furthermore, independence is not a necessary condition for more general applications of

above analysis. There is in fact a broader class of distributions under which, as desired, the

impossibility of small bets entails the impossibility of large ones. Instead of taking the time to

characterize these distributions, however, perhaps a more promising project would be to extend

this analysis by positing that individuals have a single, concave utility function but different

endowments in each state, and by allowing bets to differ in both odds and size. For now, then,

the analysis begun here fails to characterize in a general way the distributions of preferences

and signals under which a no-bet result holds, but it serves to shed some light on the forces at

play in decentralized betting under heterogeneous state-contingent preferences, and to illustrate

some of the complications that can arise.
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